2011年7月15日 星期五

神貘天氣: 下雨的預測準確率

上一篇講到我們國家的中央氣象局的預測準確率, 本來以為不會多好, 後來發現事實上還不會太糟, 甚至可以說是在 A 段班的, 而我一直沒寫下雨的準確率時, 認為這個應該大家都有 8 成到 9 成的準確率, 結果我錯了, 事實上有 6 成到 7 成的準確率而已.

這次的計算因為有點小麻煩, 因為有若是要計算溫度的話, 最簡單的就是用每日的最高跟最低溫做比較, 但每天降雨機率的預測本身就是一個在變動的數字, 每次預測都不太一樣, 但這個並沒有最高最低, 只有全有與全無 (有下雨與沒有下雨), 所以到底要如何去做 KPI 的準確率就讓我想了許久.

最後還是把每次的機率給平均起來, 做為當日的預測, 唯一的問題就是每一個單位預測的方式都不太一樣, 所以要先 Normalization, 而接下的計算就跟溫度的預測差不多了.

說起來溫度的預測是有很多解空間 (可能是 40*40) 的狀況, 但下雨與否的解空間好像只有 2, 也就是有跟沒有下雨, 因此預測起來應該很簡單才對, 且大家都說有下雨預測本來就應該有 8 成以上的準確率來看, 說起來感覺也沒那麼困難, 我本來也不太想把這個差別不大的預測當 KPI, 但現在算一遍後, 發現我錯了, 因為大家多數是在公布下雨機率的情形下, 解空間暴增為 100, 這預測變得沒那麼簡單了.

天氣穩定的話, 說要達到預測率 100% 是不難的 (畢竟解空間只有 2), 且控制在 8 成也是沒問題的, 但天氣一不穩定, 只要超過 3 天以前要預測有沒有下雨似乎比想像中的還要難, 事實上八成準確率指的是昨天預測明天, 但這個 KPI 若是延長到五到十天, 當然困難到就更高了, 下表就是現在檢驗的結果 Snapshot 快照:


而這張圖是取自今天 (7/15) 的 http://weather.datamining.tw/kpirain.php , 並不意外第一名可以是在 8 成以上, 但有時第一名卻不到 6 成, 當然平均起來至少有 5 成以上, 但也常常超過 5 成的誤差, 這代表這預測比猴子還糟糕.

只是目前來看, 我們國家的中央氣象局表現的比溫度的預測還要糟糕, 雖然有 6 成 5 的準確率, 但是排名第三名, 比 Weatherbug 以及對岸來得差, 這可能就有點須要檢討了.

而在完成下雨預測的 KPI 後, 加上溫度的 KPI 就完成檢核點的計算, 而進一步是能不能就這些預測做不同的 View, 也就是說我們可以不做天氣的預測, 畢竟這是專業的, 但我們可以利用資料探勘來計算誰的預測比較準, 這代表的是有沒有可能有更高的準確率呢? 請大家拭目以待吧.

沒有留言:

張貼留言

LinkWithin

Related Posts Plugin for WordPress, Blogger...

熱門文章